杨辉三角,是二项式系数在三角形中的一种几何排列,中国南宋数学家杨辉1261年所著的《详解九章算法》一书中出现。在欧洲,帕斯卡(1623----1662)在1654年发现这一规律,所以这个表又叫做帕斯卡三角形。帕斯卡的发现比杨辉要迟393年,比贾宪迟600年。
输入一个整数N,打印N行杨辉三角。
Time Limit: 2 sec / Memory Limit: 1024 MB
Score : 200200 points
Problem Statement
Find the NN integer sequences A_0,\ldots,A_{N-1}A0,…,AN−1 defined as follows.
-
For each ii (0\leq i \leq N-1)(0≤i≤N−1), the length of A_iAi is i+1i+1.
-
For each ii and jj (0\leq i \leq N-1, 0 \leq j \leq i)(0≤i≤N−1,0≤j≤i), the (j+1)(j+1)-th term of A_iAi, denoted by a_{i,j}ai,j, is defined as follows.
-
a_{i,j}=1ai,j=1, if j=0j=0 or j=ij=i.
-
a_{i,j} = a_{i-1,j-1} + a_{i-1,j}ai,j=ai−1,j−1+ai−1,j, otherwise.
Constraints
-
1 \leq N \leq 301≤N≤30
-
NN is an integer.
Input
Input is given from Standard Input in the following format:
NN
Output
Print NN lines. The ii-th line should contain the terms of A_{i-1}Ai−1 separated by spaces.